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Synopsis 

Draw resonance, a periodic variation of spin line diameter in unstable melt spinning, was mea- 
sured for its wave form under 34 different spinning conditions for PET and PP. In an attempt 
to simulate the measured wave form, the equations of continuity and momentum for the isother- 
mal melt spinning of power law fluids were solved for their limit cycle solutions expressed in the 
time variations in the cross-sectional area at  the take-up. Power law exponent p and draw down 
ratio $, uniquely define the solution. Theoretical curves were superposed on the experimental 
amplitude-versus-$, diagram and oscillation period-versus-$w diagram to assign p value to each 
experimental point. Excellent agreement between theory and experiment was obtained with 
PET in that p values were nearly independent of $w and of the diagram used in the determina- 
tion of the p value, amplitude diagram, or oscillation period diagram. Motion pictures (16 mm) 
of the side profiles of the pulsing spinline showed good agreement with the theoretical side pro- 
files constructed from the corresponding limit cycle solution. It was proposed that the stability 
of melt spinning has no direct equivalence to the spinnability of fluids. 

INTRODUCTION 

When the process of melt spinning becomes unstable, standing wave-type 
variations in the thickness of the filament taken up develop. This pulsing 
phenomenon has been called “draw resonance’’ since Miller’ first used the 
term in his early paper. 

Subsequently, several researchers2-8 made attempts to analyze draw reso- 
nance by means of perturbation studies of the equations of momentum, con- 
tinuity, and energy set up for the conditions of melt spinning. Their studies 
established to a reasonable certainty that draw resonance is the result of an 
instability in the classical sense of the process of melt spinning and that (i) 
cooling of the filament in the air gap plays a predominant role in stabilizing 
the conventional industrial melt spinningg; (ii) shear thickening of the poly- 
mer, that is, increasing the exponent p in the power law model, tends to sta- 
bilize the spinning6; and (iii) the isothermal spinning of Newtonian fluids is 
unstable2p4 when the draw-don ratio of spinning is more than 20. 

K a ~ e ~ ? ~  compared theoretical results with experiments in PP film casting 
and found that the two agreed very well in oscillation period. 
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While these perturbation studies were successful in predicting the oscilla- 
tion period and approximate conditions of neutral stability, they failed to 
predict the exact wave form of draw resonance, notably the amplitude, since 
some information is lost when the equations are linearized. 

To overcome this drawback, the authorslo solved the equations of continui- 
ty and momentum for isothermal spinning directly without recourse to per- 
turbation. The solutions obtained were limit cycles, standing waves of con- 
stant amplitude and period, in agreement with the general wave form of draw 
resonance. Similar results were obtained by Fisher and Dennll by means of 
a different approach. 

The present study, still concerning draw resonance in isothermal spinning, 
extends and supplements the previous studylo in the following respects: (i) 
the polymer viscosity model was extended from the Newtonian to include the 
power law fluid, (ii) additional experimental observations of isothermal draw 
resonance were carried out with improved precision in an effort to obtain a 
better verification of the limit cycle solution; and (iii) motion pictures (16 
mm) were taken of the side profiles of the pulsing spinline in draw resonance, 
and the pictures were compared with the theoretical side profiles derived 
from the limit cycle solution to demonstrate the validity of the solution and 
to show the wave-like nature of draw resonance. 

THEORETICAL 

Power Law Fluids 

Using the assumptions made in a previous paper,12 the governing equations 
for the isothermal spinning of power law fluids are 

av F 
ax A0 

- 

aA a(Au) -+-- 
a r  ax 

- 0  

p = po(au/ax)P-l (3) 

where x is the axial coordinate, in cm, measured downstream from where the 
maximum filament diameter occurs due to die swell; r is time, in sec; A is 
cross-sectional area, in cm2; u is axial velocity, in cm/sec; F is filament ten- 
sion, in gram weight; and PO and p are material constants. 

Boundary conditions are identical to those used in the analysis'O of isother- 
mal Newtonian liquids: 

(i) Fixed velocity uoo and filament thickness Am a t  the point where the 
filament diameter is maximum due to die swell. Since this point is very close 
to the die exit, we call it hereafter simply die exit and denote i t  by a subscript 

(ii) Fixed take-up velocity uw, where subscript w denotes the values a t  the 

Equations (1) and (2) are converted into a nondimensional form by defin- 

00. 

take-up point. 

ing the following variables. 
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= x / x w  nondimensional distance (4) 

T* = ~ u o o l x ,  nondimensional time (5) 

X = A/Am nondimensional filament thickness (6) 

rc/ = uluoo nondimensional axial velocity (7) 

(8) 
AooPo uoo 

Except for E ,  these nondimensional variables have the same definitions as 
those used in the analysislO of Newtonian liquids. Equations (1) and (2) now 
become 

P 
nondimensional tension 

F [ = - (3) 

aX a 
aT* a{ 
- + -(A*) = 0 

where 

q = llp (11) 

Steady-state solutions of eqs. (9) and (lo), denoted by subscript 0, are 

where qW is the draw-down ratio of melt spinning. 

fined below in the same manner as in the caselo of Newtonian fluids: 
We further replace dependent variables II/ and X with ratios V and W de- 

* = v*o (14) 

X = w*o. (15) 

Dimensionless distance 5; too, is replaced with dimensionless residence 
time p defined below: 

The value of {* at the take-up point ({ = 1) is 

Using eqs. (12) through (16), eqs. (9) and (10) become 

where 
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q - 1  
w =  

q ($3- W 1) 

Boundary conditions (i) and (ii) are rewritten in terms of dimensionless 
variables as (i) V = W = 1, at  r" = 0; and (ii) V = const (= 1.1 in the present 
study), at  r* = rW*. 

Since p and $w are the only parameters contained in eqs. (18) and (19) and 
the boundary conditions above, solutions are uniquely defined by these two 
parameters. Dimensionless spinning tension E is an extra dependent variable 
whose values are decided to satisfy the boundary condition (ii) above. 

It is noteworthy that solution in V(<*, r*) or W ( p ,  r*) is independent of 
such physical parameters as xw, urn, Am, or 00. 

Since analytical solution is not available on eqs. (18) and (19), numerical 
solution becomes mandatory. For this purpose, eqs. (18) and (19) are con- 
verted into the difference eqs. (21) and (22) using a simple backward differ- 
ence scheme as in a previous paperlo: 

(21) Vi+l,j+l = F3 + Fz(Wi+l,j+l)-' 

where 

A = A F  = AT* = ru*/N. (26) 

There is a difficulty involved in the above numerical scheme in that eqs. 
(21) and (22) cannot be solved for Vi+I,j+l and Wi+~,j+l explicitly. Use of 
formal iterative process in solving eqs. (21) and (22) on each (i,j) mesh point, 
on the other hand, is prohibitive with respect to computer time. To over- 
come this difficulty, eq. (21) is replaced by an approximate formula 

where the value in parenthesis is a slight modification of the right hand side 
of eq. (22). Errors incurred by this approximation is expected to diminish 
with increasing number N of differencing increments. Besides, the error can 
be evaluated by setting the value of q close to unity and comparing the solu- 
tion thus obtained with that of corresponding Newtonian equations1° which 
involve no approximation of this kind. It should be noted that the Newto- 
nian case o fp  = q = 1 cannot be handled by eq. (18) since w becomes infinite- 
ly large as q approaches unity. In this case, eq. (28) developed in the previ- 
ous studylo has to be used in place of eq. (18): 
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The finite difference equation derived from eq. (28) is 

Vi+l,j+l = (1 + F I F ~ ) / F ~ F ~  - 1) 

where 

F2 = (1  - SE log +w)/(t'A) + (log h)/[ 
F3 = (1 - s" log +w)Vi,j+d([A). 

(31) 

(32) 
As discussed in a previous papertlo the wave form of limit cycle is indepen- 

dent of initial conditions; the solution expressed in Wiw,j settles to a standing 
wave of fixed amplitude and period after the decay of the initial transient. 
For this reason, any initial values can be given to W ~ , J  with the restriction 
that they are positive and W1,1 is equal to unity. With some experience and 
skill, it becomes possible to set the Wi,l values in such a way to make the ini- 
tial transient short saving the computer time. 

In principle, the initial Vi,l values have to be derived from the given Wi,1 
values using eq. (21) in an iterative process to satisfy the boundary condition 
(ii). The initial Vi,l values, however, turn out to be irrelevant in subsequent 
computations and need not be computed since the right-hand sides of eqs. 
(21) and (22) do not contain either Vi,j or Vi+l,j. 

The numerical solution of eqs. (21) and (22) proceeds in the following man- 
ner: (a) j is set to 1; (b) initial values are given to WQ; (c) an arbitrary value 
is given to [; (d) V l j  through Viw,j and W l j  through Wiw,j are computed suc- 
cessively using the boundary condition (i) and eqs. (21) and (22); (e) [ is 
changed using Newton's formula, and c and d above are repeated until the 
boundary condition (ii) is satisfied within a predetermined tolerance; (f) j is 
increased by 1, and steps c through f above are repeated until the solution se- 
ttles to a limit cycle. 

Computation for one spinning condition took about 5 min on an IBM-370- 
158 machine when N was equal to 100 and the endpoint of computation was j 
= 5000. Computation time was found to be roughly in proportion to the 
number of mesh points used in the computation. The number is equal to N 
times the number of steps in j computed. As eq. (26) shows, independent 
variables {* and r* share a common difference increment A. For this reason, 
the j = N point on the j scale always correspond to r* = lw*, the nondimen- 
sional residence time of the polymer in the steady-state spinning. 

Limit Cycle Solutions for the Power Law Model 

Difference eqs. (21) and (22) were solved numerically to satisfy the bound- 
ary conditions (i) and (ii) as discussed in the previous section for various 
values of power law exponent p and log draw-down ratio log +w. Except for 
the effects of the number N of difference increments, p and GW are the only 
parameters that affect the solutions. Both limit cycle solutions and stable 
solutions as listed in Table I were obtained. Solution characteristics shown 
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TABLE I 
Limit Cycle Solutions for Power Law Modela 

No. log $ w  P 7, * Wmax Wmin tmax/to N 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

2.095 
2.095 
2.095 
2.095 
2.595 
2.595 
3.095 
3.095 
3.095 
3.295 
3.295 
3.595 
3.595 
3.595 
3.595 
3.595 
3.595 
3.595 
3.895 
3.895 
3.895 
3.895 
4.095 
4.095 
4.095 
4.095 
4.095 
4.095 
4.335 
4.335 
4.335 
4.445 
4,445 
4.445 
4.445 
4.445 
4.595 
4.595 
3.295 
3.595 
3.595 
3.895 
3.895 
4.095 
4.095 
4.095 
4.095 
4.445 

0.60 
0.75 
0.80 
1.00 
0.90 
1.00 
0.75 
0.90 
1.00 
1.00 
1.05 
0.95 
1.00 
1.05 
1.10 
1.15 
1.20 
1.30 
0.95 
1.00 
1.05 
1.30 
0.95 
1.00 
1.05 
1.10 
1.20 
1.30 
1.00 
1.35 
1.45 
1.10 
1.20 
1.30 
1.40 
1.50 
1.45 
1.50 
1.00 
1.00 
1.10 
1.00 
1.20 
1.00 
1.10 
1.20 
1.25 
1.20 

0.7034 
0.5590 

0.4600 
0.4152 
0.5679 
0.5019 
0.3409 
0.4029 
0.3617 
0.3311 

0.5951 
0.5348 
0.4104 

0.6114 
0.5467 
0.5144 
0.4681 
0.3546 
0.2858 
0.5568 
0.2583 

0.4944 
0.3963 
0.3048 
0.2301 

0.2196 

0.5292 
0.5887 
0.4645 
0.6287 
0.4000 
0.6463 
0.5648 
0.4507 
0.3709 
0.4961 

2.58 
NS 
S 
S 
NS 
S 

8.21 
4.29 

NS 
2.36 
1.12 
8.40 
5.88 
4.64 
2.50 
1.21 
0.925 

S 
12.63 

9.5 
8.45 

S 
15.91 
12.7 
11.41 

9.02 
3.95 
1.07 

16.7 
1.19 

S 
15.0 
9.1 
4.2 

S 
1.06 

S 
5.49 

10.75 
5.66 

17.11 
5.57 

22.11 
17.27 
10.38 

5.93 
20.47 

0.229 

0.036 
0.137 

0.32 
0.711 
0.051 
0.100 
0.134 
0.303 
0.69 
0.86 

0.025 
0.048 
0.057 

0.016 
0.033 
0.036 
0.055 
0.176 
0.793 
0.022 
0.676 

0.023 
0.057 
0.183 
0.855 

0.811 

0.102 
0.0399 
0.104 
0.0214 
0.111 
0.0155 
0.022 
0.048 
0.110 
0.020 

1.80 

3.88 
2.70 

1.88 
1.23 
4.42 
3.5 
3.28 
2.03 
1.26 
1.08 

6.34 

4.59 

7.53 
6.1 
6.66 
5.60 
3.17 
1.15 
7.5 
1.30 

7.7 
5.9 
3.5 
1.12 

1.16 

3.23 
5.00 
3.49 
6.95 
3.83 
8.41 
7.74 
6.05 
4.07 

10.05 

100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 

100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
400 
400 
4 00 
400 
400 
400 
400 
400 
400 
400 

a log $'w = log draw down ratio;p = power law exponent; T,* = dimensionless oscill- 
ation period, W,,,, Wmh = peak and valley values of dimensionless cross-section area at 
take-up; tmax, grnh = peak and steady-state values of dimensionless spinning tension. 
Stable and near stable solutions are marked with S and NS on the Wmax column. 
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in Table I are p ,  log &, nondimensional oscillation period 7=*, peak W,,, 
and valley Wmin values of Wiwj,  and the ratio of peak spinning tension 
to average spinning tension. Stable solutions are marked with the letter S. 

lo~yw-4.095 NO. 28 

3OQO-500 
QO 

p.1.10 I 

P-1.00 Newtonian fluid 

r\l0-29 -I 0.5468 I- 

- J  

N0.W log Y,= 4.095 
N =400 

J 

Fig. 1. Limit cycle solutions with the power law model expressed as time variations in dimen- 
sionless cross-sectional area W at the take-up point. 
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Some of the limit cycle solutions listed in Table I are shown in Figure 1 as 
Wi,j-versus-j curves to demonstrate the general wave form. In Figure 1, j = 
N correspond to the steady-state residence time of the melt-spinning system. 
Shown enlarged in Figure 2 is a wave peak of one of the limit cycle solutions 
computed at  N = 400 to demonstrate the peculiar skew in the wave form. 

To economize computer time, solutions 1 through 38 in Table I were com- 
puted setting N equal to 100. This gave a quick view of the general trend of 
the solutions. These 38 solutions were then summarized graphically by con- 
structing the contours of constant W,,,, Wmax/Wmin, and rC* on the p-ver- 

1000 - 

C - 
E 
3 100- 

a 
\ 

; 
10 - 

fww.4.095 

Fig. 3. Inflections on the Wma./Wmin va. p curves due to the use of the approximate formula 
eq. (27). 
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sus-log $w plane. In constructing these contours, it was noted that the 
WmaxlWmin values plotted against p showed a peculiar inflection near the 
Newtonian value of p = 1, as shown in Figure 3. The inflection was estimat- 
ed to be caused by the use of the approximate formula, eq. (271, in place of 
the exact formula, eq. (22). The plotted points in Figure 3 were, therefore, 
smoothed out by the solid curves which pass through the Newtonian points 
( p  = 1) derived without approximation from eq. (29). 

The number N of differencing increments of 100 was felt not high enough 
to obtain a reasonable accuracy on the computed values of W,,,, Wmin, and 
r*. To test the effect of N on the solution, computations were carried out for 
the Newtonian case of p = 1 and log $w = 4.095 using four different N values, 
100,200, 300, and 400. The W-versus-j curves for N = 100 and N = 300 dif- 
fered considerably, as Figure 4 shows. The peak value W,,, of nondimen- 
sional cross-sectional area at  the take-up, when plotted against N as shown in 
Figure 5, approached asymptotically a fixed value which presumably is the 
exact solution of eqs. (18) and (19). As Figure 5 clearly shows, N has to be a t  
least 400 for a reasonable accuracy of Wma,. 

On account of the above findings, additional solutions 39 through 48 in 
Table I were computed under N = 400, although computer time increased by 
a factor of about 10 over that for N = 100. The solutions for N = 400 thus 
obtained were compared with those for N = 100 on the p-versus-log J.w plane 
with the following findings: 

(a) Increasing the value of N from 100 to 400 affected the neutral stability 
curve very little (contour of Wmax = 1). 

(b) The same increase in N considerably increased the values of W,,,, 
Wmin, and r*, as Figures 4 and 5 show. However, the ratios of increase of 

Fig. 4. Influence of the number N of differencing increments on the wave form of the limit 
cycle solution. 
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W,,, and Wmin remained fairly constant over the region in the p-versus-log 
ic/w plane covered by the present study, and the increases in T* were likewise 
consistent and predictable, as Figure 6 suggests. 

Taking these findings into consideration, the contours on the p-versus-log 
plane were modified to make them accurate and compatible with solu- 

tions 39 through 48 ( N  = 400). The modified contours of W,,,, Wmax/Wmin, 
and r* are shown in Figures 7 and 8. 

The following discussion may be made concerning the above limit cycle so- 
lutions: 

(i) Changes in p value away from the Newtonian value of 1 in either direc- 
tion brought changes in amplitude and period, but no marked change in the 
general nature of wave form (Fig. 1). 

Newtonian fluid 
log 'f'w'4.095 30t 

0 100 200 300 400 500 
N 

Fig. 5. Asymptotic convergence of WmaX with increasing N .  

'f' 1 )  
10.7 

- 0.6 

w 
- 05 

- 04  
o N . 1 0 0  

N = 4 0 0  

0.3 4 20 40 60 80 roo 
YW 

Fig. 6. The systematic and nearly predictable changes in the values of W,, and T=* with in- 
creasing N .  
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1.5- 

1.0. 

a 

05- 

(ii) The neutral stability curve ( W,,, = 1) approximately is a straight line 
on the p-versus-log $w* plane and is in general agreement with the curve 
given by Shah and Pearsod (Figs. 7 and 8). 

(iii) Contours of constant W,,, and constant WmaxlWmin are approxi- 
mately straight lines parallel to the neutral stability line. That is to say, the 
limit cycle solutions on any one of such contours share common W,,, and 
Wmin values. The gradient of these contours is approximately 

As far as Wma, and Wmin are concerned, therefore, a change in log t,bw by 1 
unit is equivalent to a change in p by -0.29 units (Figs. 7 and 8). 

(iv) Contours of constant nondimensional period rc* may be expressed ap- 
proximately as a group of straight lines, as shown in Figure 7. The rc* con- 
tours, however, are not parallel to each other or to the neutral stability line 
(Figs. 7 and 8). 

(v) Shear thinning liquids (p < 1) reaches neutral stability a t  a draw-down 
ratio less than the Newtonian value of 20 (Figs. 7 and 8). 

Fig. I .  

- Polnhof computotlon 

*W plane. 

0' L 

100 1000 
lo  Y; I 

Fig. 8. Contours of constant WmaxlWmin on the p-vs.-log fiW plane. 
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TABLE I1 
Draw Resonance Experimentsa 

Spinning conditions 
ExDerimental results 

Polymer 
type and G, (g/ 
run no. min) to,, C x w ,  cm 

PET-A-1 5.9 280 
2 5.9 280 
3 5.9 280 
4 5.9 280 
5 5.9 280 
6 5.9 280 
7 5.9 280 
8 5.9 280 
9 8.0 270 

10 8.0 270 
11 8.0 270 
12 8.0 270 
1 3  8.0 285 
14 8.0 285 
15  8.0 285 
16 8.0 285 
17 8.0 300 
18 8.0 300 
19 8.0 300 
20 8.0 300 

PET-B-1 5.9 280 
2 5.9 280 
3 5.9 280 
4 5.9 280 
5 5.9 280 

PP-1 3.7 265 
2 3.7 265 
3 3.7 265 
4 3.7 265 
5 3.7 265 
6 3.7 265 
7 3.7 285 
8 3.7 285 
9 3.7 285 

10 
5 
2 
1 
0.5 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

10  
5 
2 
1 
0.5 
6 
6 
6 
6 
6 
6 
6 
6 
6 

* W  
~ 

48.6 
48.6 
48.6 
48.6 
48.6 
35.8 
79.8 
59.9 
35.5 
36.5 
44.5 
54.5 
35.8 
38.4 
45.3 
53.6 
33.4 
40.8 
49.9 
51.7 
50.0 
50.0 
50.0 
50.0 
50.0 
19.6 
19.9 
20.6 
22.1 
23.1 
24.4 
21.8 
24.8 
26.0 

3.88 
3.88 
3.88 
3.88 
3.88 
3.58 
4.38 
4.09 
3.57 
3.60 
3.80 
4.00 
3.58 
3.65 
3.81 
3.98 
3.51 
3.71 
3.91 
3.95 
3.91 
3.91 
3.91 
3.91 
3.91 
2.98 
2.99 
3.03 
3.10 
3.14 
3.19 
3.08 
3.21 
3.26 

190 
190 
190 
190 
190 
140 
312 

230 
230 
281 
344 
230 
230 
281 
344 
230 
281 
344 
344 
190 
190 
190 
190 
190 

23.4 

70;O 
71.5 
73.5 
79.0 
82.5 
87.1 
96.6 

110.2 
115.8 

172 
172 
172 
172 
172 
200 
134 
155 
182 
182 
164 
149 
182 
182 
164 
149 
182 
164 
149 
149 
172 
172 
172 
172 
172 
273.5 
270.6 
266.9 
257.5 
251.9 
245.2 
232.8 
218.0 
212.6 

284.0 110.0 
485.5 55.5 
436.1 61.0 
324.0 110.0 
198.9 156.0 
426.0 97.0 
438.8 38.0 
428.0 48.0 
441.6 74.0 
427.1 81.0 
451.7 48.0 
493.9 42.0 
360.0 85.0 
361.1 88.0 
435.9 60.0 
468.8 44.0 
303.4 104.0 
346.1 74.0 
392.2 48.0 

334.0 91.0 
490.8 59.8 
461.0 63.0 
284.0 111.7 

stable 
- stable - 

350 209 
472 144 
538 104 
556 94 
560 8 5  

328 139 
322 131 

417.6 47.0 

stable 

160 
106 
52 
23 
18 
33 
85 
6 3  
33 
35 
44 
53 
32 
31 
40 
49 
30 
35 
45 
49 

180 
123 

53 
25 

- 

74 
80 
88 
94 
99 

107 
114 

2.73 
7.97 
6.43 
3.55 
1.34 
4.53 

7.64 
5.91 
5.53 
7.55 

11.03 
3.93 
3.95 
7.03 
9.94 
2.79 
4.43 
6.96 
7.89 
3.77 
8.14 
7.18 
2.72 

10.7 

- 

1.67 
3.13 
4.37 
4.87 
5.22 

2.26 
2.29 

6.67 
76.5 
51.1 

8.68 
1.68 

19.3 

79.5 
35.6 
27.8 
88.6 

138.3 
17.9 
16.8 
52.8 

113.5 
8.5 

21.9 
66.8 
78.9 
13.5 
67.4 
53.5 

6.5 

133  

- 

2.8 
10.7 
26.8 
35.0 
43.4 

5.6 
6.0 

a d ,  is the steady-state filament diameter at the take-up computed from the mass 
throughput G and take-up speed u,; d,,, and d,h are the measured maximum and 
minimum filament diameter; L ,  is the oscillation period measured along the filament 
taken up; W,,, and Wmax.Wmj,, are derived from the d,, dmax, and d,i, data. 

(vi) Limit cycle solutions expressed in Wi,j-versus-j curves, under both 
Newtonian and power-law viscosity models, have a skewed wave form being 
steeper on the front of the peak. This fact, overlooked in a previous study,1° 
was discovered when N was increased from 100 to 400. The cause and the 
physical significance of the skewed wave form are not clear to the authors at  
this moment, although such wave form is a common occurrence in nonlinear 
vibration (Figs. 1 and 2). 

(vii) In Figure 6, W,,, becomes equal to GW on curve A, signifying that the 
peak filament diameter at  the take-up exceeds the maximum diameter of die 
swell. That is to say, the filament has thickened in melt spinning, or, still in 
other words, spinning tension has become negative or compression has taken 
place at  least during part of the draw resonance cycle. This, of course, is not 
realizable in physical melt spinning. Under such circumstances, spinning 
tension 40 becomes an added boundary or restricting condition. Besides, 
under such near-zero spinning tension, gravity force and surface tension are 
no more negligible. The region below curve A, therefore, is out of the scope 
of the present study. This region, the authors believe, represent the dripping 
liquid droplet-type spinning in which gravity and surface tension play a 
major role (Fig. 7). 
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Fig. 9. Schematic of experimental setup. Values in parentheses apply to runs PET-A-1 
through 8 and PET-B-1 through 5. 
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Fig. 10. Experimentally measured wave form of draw resonance for PET in filament diameter- 
vs.-filament length curves. 
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Draw Resonance Experiments 

Draw resonance experiments were carried out using a conventional fiber- 
grade PET resin having an IV of 0.563 and designated as PET-A in Table 11, 
a special PET test copolymer containing several weight percent of additive 
element for an improved dyeability and designated as PET-B and a fiber- 
grade PP resin. Water quench bath was used in all experiments as shown 
schematically in Figure 9. No isothermal chamber was used in the spinning 
of PET-A and PET-B resins since the low Stanton numberg in these experi- 
ments, except in run PET-A-1, ensuredg approximately isothermal spinning. 
Isothermal chamber was, however, used in the spinning of PP. Most of the 
34 spinning runs listed in Table I1 resulted in draw resonance. The wave 
form of draw resonance was observed by measuring the diameter of the fila- 

log b2.98 

- 
No. P P - l  

01 

t 
4001 
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10 

f I: 
5 -  

ment taken up on a winder by means of a high-precision dial gauge. Diame- 
ter measurements were made at  2-cm increments near the peak, with the in- 
crement increased up to 10-cm as the measurement moved away from the 
peak. The measured wave forms for 11 of the 34 spinning runs are shown in 
Figures 10 and 11, respectively, for PET and PP. 

The maximum diameters of die swell were measured by photographic 
means. The maximum diameters were divided into the capillary diameter to 
obtain the die swell ratios listed below. These ratios are for the spinning 
conditions listed in Table 11. PET-A, 1.13; PET-B, 1.17; PP, 1.21 at  285OC; 
PP, 1.33 at  265OC. 

In computing the steady-state draw down ratio #w listed in Table 11, the 
maximum diameter of die swell was always used rather than the capillary di- 
ameter. Otherwise, good agreement between theory and experiment cannot 
be obtained. Other parameters used in computing t+bw are the take-up speed 

- 

o 2 7 0 ' C  
0 285'C 
0 300OC 

Ol...... 
50 60 40 Yw 

30 

show, im FI 13 J. 
40 50 60 h '"$0 ' ' ' ' ' ' 

(b) (C) 

Fig. 12. Comparison of theory and experiment (PET) in the influence of & on Wma./Wmin. 
W,,,, and oscillation period L,. 
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uw, the specific gravity of polymer at  the spinning temperatures, and the 
mass throughput G. 

The steady-state filament diameter do in Table I1 was computed in a like 
manner. 

The Wmax and Wmax/Wmin values in Table I1 were derived from the mea- 
sured dmax and dmin values. 

Spinneret capillary dimensions were 1.09 mm diameter and l/d = 0.5 for 
the first eight runs from PET-A-1 to PET-A-8 and 1.00 mm diameter and Zld 
= 10 for the rest of the experiments. 

The experiments listed in Table I1 were aimed at  seeking the effects of two 
parameters, draw-down ratio qW and air gap xw, on the wave form of draw 
resonance. In the runs PET-A-1 through PET-A-5 and PET-B-1 through 
PET-B-5, x w  was varied keeping other parameters constant. In the rest of 
the experiments, qW was varied keeping other conditions unchanged. 

- 

DISCUSSION OF EXPERIMENTAL RESULTS 

As shown in Figures 12a through 12c, the experimental data for the cross- 
sectional area ratio Wmax/Wmin, the peak cross-sectional area W,,, (dimen- 
sionless), and the oscillation period L, expressed in the length of filament 
taken up are plotted against steady-state draw-down ratio qW. These data 
are for runs PET-A-9 through 20 in Table 11. In these spinning runs, the 
take-up speed uw (equivalent to I ) ~ )  and the spinneret temperature too were 
varied. 

The lines drawn in the above figures are contours of constant p derived 
from the theoretically computed values listed in Table 1 and summarized in 
Figures 7 and 8. The contours assign p value to each experimental point. 

Figures 12a through 12c show that increasing too slightly increased the p 
values. For a given too, the p value for PET assigned in the above manner 
was nearly constant over the qW range covered by these experiments and was 
independent of the three parameters, WmaxlWmin, Wmax, and L,, used in the 
determination of the p value. 

This verifies that a t  least within the scope of these experiments, the power- 
law model adequately simulated the wave form of draw resonance in PET, 

The striking agreement between theory and experiment above can more 
clearly be demonstrated, as shown in Figure 13, by fitting the experimental 

N o .  ? E T - A - I S  

I( filament diamater 

0 100 200 300 
01 

Length (cm) 

Fig. 13. Excellent agreement of theory and experiment in run PET-A-15. 



MELT SPINNING 185 

curve for the run PET-A-15 by the theoretical curve having the qw value 
given by the experimental condition and the p value of 1.14 which make the 
theoretical curve agree with experimental curve in W,,,. In drawing the 
theoretical curve, time scale was converted from T* to filament length L using 
the relation 

(34) 

where (&,X,) becomes the conversion factor. 
The agreement between theory and experiment was less perfect with PP as 

shown in Figures 14a through 14c drawn in the same manner as in PET 
above. The p value remained unchanged for the variation in qw from 19.6 to 
24.4 for too = 265OC, but it differed considerably Ijy the three parameters 
used in the determination. The p value varied from 0.90 in the L, diagram 
to 1.00 in the Wmax/Wmin diagram. 

It was also noted that the critical draw-down ratio for PP seems. to decrease 
fairly sensitively with increasing too as far as Figures 14a and 14b show. The 
extrapolation of this trend seems to agree with the experimental point given 
by Weinberger13 as shown in Figure 15, although no conclusion can be drawn 

L = TUw = (~UOO/Xw)(Uw/~OO)Xw = ($wXw)7* 

80 
PP 93 

t.=265-c ad 

x'=6i! 

I pp t. = 265 'C 

0- 

t 
(C) 

10 20  30 

Fig. 14. Comparison of theory and experiment (PP) in the influence of &, on Wmar/Wmin, 
Wm,, and Lc. 



186 ISHIHARA AND KASE 

5.0- 

20 

2 -  
$ -  

-0 10- 

- n  + -  

' i -  

8 

.. ' 2 
* x .  

s o  

PP 

/ P P - 

/ 
I 

/ 
I 

I3 */i br We;- brr ef 
I J 

,' 

300 
* ' ' " . ' " '  

200 250 

1000- 

100 

Fig. 16. Influence of air gap xw on the theoretical and experimental values of Wmar/Wmin and 
L,. The stabilization at low x w  values is not predicted by the present power law model. 
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present power law model. In fact, the draw resonance was almost surpressed 
by narrowing the air gap down to 5 mm. At first, the spring-like elastic na- 
ture of the die swell region was suspected to have caused the above stabilizing 
effect. Later, i t  was noted that the model proposed by Denns simulating the 
isothermal spinning of liquids obeying a modified Maxwell viscosity is likely 
to explain the stabilization of spinning under narrow air gap. 

In Denn's above model, unstable spinning can eventually be stabilized by 
increasing the value of the parameter a, which is defined as 

(35) u 00 
X W  

a=-d 

where 0 is the relaxation time of the fluid and uoo is the fluid speed at the 
maximum diameter of die swell; -8 may be considered a constant for a given 
polymer, and 1100, too, is a constant unless the metering pump speed is varied. 
Therefore, decreasing J, increases a and eventually makes the spinning sta- 
ble. 

In view of the results shown in Figure 16a and the above model by Denn, 
the power law seems to be adequate under large xw but the Maxwell model 
starts to apply as xw decreases to several milimeters. 

As some of the curves in Figure 10 show, the wave form of draw resonance 
was skewed in the manner as predicted by the theoretical peak shape shown 
in Figure 2. For comparison with the experimental diameter curves in Figure 
10, the curve in Figure 2 is more adequate than the W curve. 

SIMULATION OF THE SIDE PROFILE OF SPINLINE IN 
DRAW RESONANCE 

When the spinline is observed while in draw resonance, it looks as though 
water droplets are falling along the spinline at  regular time intervals. This 
peculiarly pulsing side profile was observed and discussed conceptually by 
Bergonzoni et al.14 and Zei~hner .~ The limit cycle solutions of the equations 
of continuity and momentum discussed in the present and the previous10 
studies by the authors made possible, for the first time, the quantitative sim- 
ulation of the pulsing side profile of the spinline in draw resonance. We now 
proceed with the simulation. 

Motion pictures (16 mm) were taken of pulsing spinline under the spinning 
conditions below and were compared with theoretical side profiles derived 
from the corresponding limit cycle solution. 

Spinning conditions: polymer, PET; spinneret temperature, too = 28OOC; 
spinneret hole diameter, doo = 1.6 mm; Z/d ratio of spinneret hole, 2.0; take- 
up speed, u, 312 m/min ($, = 60); throughput, G = 5.9 g/min; air gap, x,  = 5 
cm; water bath temperature, 30°C. 

Motion picture conditions: camera, Cine-Kodak Special 11; film, 16 mm 
ASA 40, Fuji Neopan R 40; speed, 64 framedsec; lens, F 5.6 and 2.8. 

The theoretical side profiles shown in Figure 17 were constructed in the 
following manner: (i) read the Wi,j values off the computer printout for the 
limit cycle solution for p = 1 and $, = 60; (ii) convert i into x using the coun- 
terpartlO of eqs. (4) and (16) for the Newtonian case ( p  = 1) derived by the 
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authors previously; (iii) convert j into time 7 using eq. (5); (iv) convert Wi,, 
into filament diameter d ( x ,  7); and (v) draw 12 side profiles to cover one os- 
cillation period. 

Scale factor in the radial direction is arbitrary. 
Motion pictures (16 mm) covering one oscillation period are shown in Fig- 

ure 18. Time spacing of these pictures approximately correspond to that of 
Figure 17. An excellent agreement may be said to have been obtained be- 
tween the theoretical and experimental side profiles. The side profile of 
spinline in draw resonance so far discussed only conceptually7J4 was success- 
fully simulated. 

The data used in constructing the theoretical side profiles yields some ad- 

1 2 3 4 5 6 

11 12 10 7 a 9 

Fig. 17. Theoretically constructed side profiles of spinline in draw resonance; p = 1 and $w = 
60. 

Fig. 18. Motion pictures (16 mm) showing the side profiles of spinline while in draw reso- 
nance. The time spacing of pictures approximately correspond to those in Fig. 17. 
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Fig. 19. Time variation of W at different locations i along the spinline. Variation with time of 
dimensionless spinning tension [/&I and J V / J ~  at the take-up point. 
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Fig. 20. Variation of V with time at different locations i along the spinline. 
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ditional information. Shown in Figure 19 are Wi,j values plotted against 
time for different positions along the spinline. Also plotted in Figure 19 are 
time variation of spinning tension and the aV/ap  values a t  the take-up point. 
Spinning tension variation is similar in wave form to W but slightly ahead in 
phase. aV/ac* is not a direct measure of the shear rate avlax. The two quan- 
tities are related by eq. (36) below: 

Shown in Figure 20 are dimensionless velocity profiles along the spinline at 
different phases in the draw resonance cycle. 

A BRIEF DISCUSSION ON THE RELATION BETWEEN THE 
STABILITY OF MELT SPINNING AND THE SPINNABILITY 

OF FLUIDS 

The present theoretical analysis, which showed good agreement with ex- 
periments, provides information as to under what conditions the melt spin- 
ning becomes unstable, and, once unstable, to what extent the filament thins 
down in draw resonance. The present theory, however, tells little about the 
spinnability of the polymer since the breakage of the filament is not covered. 

While the filament has to thin down before it can break, draw resonance is 
not the only way to thin down the filament. In fact, the simple stretching of 
a cylindrical fluid element or increasing the draw-down ratio in a stable melt 
spinning is equivalent in thin-down effect. Besides, spinning instability or 
draw resonance is a phenomenon that takes place only under very special 
conditions so that it is hardly related to the spinnability problem which is 
concerned with a much wider range of conditions. 

Therefore, the spinnability of fluids and the stability of melt spinning are 
considered to be two independent problems having no direct equivalence. 
The spinnability problem should better be discussed under the much simpler 
geometry of cylinder stretching. 

CONCLUSIONS 

The equations of continuity and momentum with the power-law viscosity 
model were solved for nonlinear limit cycle solutions using different values of 
the power-law exponent p and steady-state draw-down ratio $w; p and $w are 
the only parameters that affect the normalized wave form of the limit cycle 
solutions. 

Water-quenched melt spinning of PET and PP was carried out under 34 
different spinning conditions to measure the wave form of draw resonance. 
The following are the conclusions drawn from the computations and experi- 
ments: 

1. The contours of constant amplitude of limit cycle, including the neutral 
stability curve, were found to be approximately straight lines in the p-versus- 
log $w plane. 

2. The theoretical wave form based on the power-law viscosity model 
showed excellent agreement with PET experiments in that the superposition 
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of the theoretical values of amplitude W,,,, WmaxlWmin, and oscillation peri- 
od rc* on the respective experimental values gave nearly identical p values 
and that the p value was approximately independent of $, over the range 
covered by the expeciments. A nearly perfect fit of the theoretical and ex- 
perimental wave form was also obtained. Agreement of theory and experi- 
ment was less perfect with PP. 

3. Decreasing the air gap x, to about 15 mm or below tended to surpress 
the draw resonance. This fact, totally unpredicted by the present power law 
model, seems to be explained by the modified Maxwell model proposed by 
Denn.8 

4. The computed limit cycle solutions were skewed in the form of the wave 
peaks. Similar skewed wave form was observed experimentally. 

5. Motion pictures (16 mm) of the side profiles of spinline in draw reso- 
nance agreed well with the theoretical side profiles. 

6. It was discussed that the stability of melt spinning has no direct equiva- 
lence to the spinnability of fluids. 

In summary, a nearly perfect simulation of the phenomenon of draw reso- 
nance was obtained, except under very narrow air gap, using the power-law 
viscosity model. 

The authors wish to express their sincerest thanks to  Dr. T. K. Matsumoto who encouraged 
the conduct of the present study; to Mr. H. Yasuda, Mr. T. Aihara, and Mr. Y. Matsui, all of 
Toyobo Co., Ltd., for their cooperation in experiments; and to Professor M. M. Denn of the Uni- 
versity of Delaware for sending his papers on the stability of the spinning of Maxwell-type liq- 
uids prior to publication. 
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